
Cloud Native Applications Workshop
What is Cloud Native?

—
WW Developer Advocacy

Contents

IBM Developer 2

• App Modernization
• Docker Overview
• Kubernetes Overview
• OpenShift Overview
• 12 Factor Apps

App Modernization is
inevitable

Evolution of application architectures

Late 90’s Enterprise Application (EAI) Services and Models

Addressed integration and transactional challenges primarily by using message oriented
middleware. Mostly proprietary systems needing a proliferation of custom interfaces.

Mid 00’s Service Oriented Architectures

Based on open protocols like SOAP and WSDL making integration and adoption easier.
Usually deployed on an Enterprise ESB which is hard to manage and scale.

Early
10’s

API Platforms and API Management

REST and JSON become the defacto standard for consuming backend data. Mobile apps
become major consumers of backend data. New Open protocols like OAuth become
available further simplifying API development .

2015 and
beyond

Cloud Native and Microservice Architecture

Applications are composed of small, independently deployable processes
communicating with each other using language-agnostic APIs and protocols.

Key tenets of a cloud native application
1. Packaged as light weight containers

2. Developed with best-of-breed languages and frameworks

3. Designed as loosely coupled microservices

4. Centered around APIs for interaction and collaboration

5. Architected with a clean separation of stateless and stateful services

6. Isolated from server and operating system dependencies

7. Deployed on self-service, elastic, cloud infrastructure

8. Managed through agile DevOps processes

9. Automated capabilities

10. Defined, policy-driven resource allocation

https://thenewstack.io/10-key-attributes-of-cloud-native-applications/

https://thenewstack.io/10-key-attributes-of-cloud-native-applications/

Key tenets of a microservices architecture
1. Large monoliths are broken down into many small services

2. Services are optimized for a single function or business capability

3. Teams that write the code should also deploy the code

4. Smart endpoints, dumb pipes (message brokers)

5. Decentralized governance

6. Decentralized data management

https://martinfowler.com/articles/microservices.html

https://martinfowler.com/articles/microservices.html

Example monolithic application

An eCommerce Java EE app on Websphere

eCommerce app

• Store front web interface

• Customer Accounts

• Inventory

• Shipping

• Back end for mobile app

Mobile app

Browser

Monolithic eCommerce app

Accounts Inventory

Store front
web app

ShippingMobile API
handler

Application
Databases

Transformed application

Key technologies

• Containers (Docker)

• Container orchestration
(Kubernetes)

• Transformation Advisor

• 12-Factor Best Practices

• CI/CD tools (e.g Jenkins)

An eCommerce microservices app on a Kubernetes cluster

Kubernetes Cluster (OpenShift)

Why microservices and cloud native?

Efficient teams

• End to end team
ownership of
relatively small
codebases

ØTeams can
innovate faster
and fix bugs more
quickly

Simplified
deployment

• Each service is
individually
changed, tested,
and deployed
without affecting
other services

ØTime to market is
accelerated.

Right tools for the
job

• Teams can use
best of breed
technologies,
libraries,
languages for the
job at hand

ØLeads to faster
innovation

Improved
application quality

• Services can be
tested more
thoroughly in
isolation

ØBetter code
coverage

Scalability

• Services can be
scaled
independently at
different rates as
needed

ØLeads to better
overall
performance at
lower cost

Cultural change considerations

• Smaller teams with broader scope
• Mini end to end development orgs in each team vs large silos across the entire development team

• Top down support with bottom up execution
• Change can’t happen effectively w/o executive sponsorship

• Change needs to be executed at the smallest organizational unit to take hold

• Teams own all metrics related to operations and development
• Have to minimize downtime + number of bugs while also maximizing the rate at which needed features

are added and minimizing the time to market of those new features

• Trust
• Teams need to build trust with other teams that they collaborate with rather than relying on one size fits all

checklists and rules

• Reward based on results not compliance
• Cultures only change when people are measured and rewarded for outcomes consistent with the changes

• Smaller more autonomous teams work better with less central micromanagement and more focus on broad
measurable goals

12 Factor Apps

12 Factor is a
methodology for
building software

Tenets for a 12 Factor App

1. Codebase
2. Dependencies
3. Config
4. Backing Services
5. Build, Release, Run
6. Processes
7. Port Binding
8. Concurrency
9. Disposability
10. Dev/Prod Parity
11. Logs
12. Admin processes

https://12factor.net

https://12factor.net/

I. Codebase

Code for a single application should be in a single code base

• Track running applications back to a single commit
• Use Dockerfile Maven, Gradle, or npm to manage external dependencies
• Version pinning! Don’t use latest
• No changing code in production

II. Dependencies

Explicitly declare and isolate dependencies. AKA: Remove system dependencies

How?

• Step 1: Explicitly declare dependencies (Dockerfile)
• Step 2: Isolate dependencies to prevent system dependencies from leaking in (containers)

III. Config

Store config in the environment (not in the code).

How?
• Inject config as environment variables (language agnostic)
• ConfigMap in Kubernetes does this ^

$ docker run -e POSTGRES_PASSWORD=abcd postgres

IV. Backing Services

Treat backing resources as attached services. Swap out resources.

How?

• Pass in URLs via config (see III.)
• K8s built in DNS allows for easy service discovery

V. Build, Release, Run

Strictly separate build and run stages.

Why?

Rollbacks, elastic scaling without a new build

How?

• Use Docker images as your handoff between build and run
• Tag images with version. Trace back to single commit (see I. Codebase)
• Single command rollbacks in Kubernetes

base
image

app code
v1.1

docker build
registry

v1v1.1

VI. Process

Execute app as stateless process

Why?

Stateless enables horizontal scaling

How?

• Remove sticky sessions
• Need state? Store in volume or external data service
• Use persistent volumes in Kubernetes for network wide storage

service

app app app

VII. Port Binding

Export services via port binding. Apps should be self-contained.

Why?

Avoid “Works on my machine”

How?

• Web server dependency should be included inside the Docker Image
• To expose ports from containers use the —publish flag

VIII. Concurrency

Scale out via the process model. Processes are first-class citizens

Why?

Follow the Unix model for scaling, which is simple and reliable

How?

• Scale by creating more processes
• Docker: really just a process running in isolation
• Kubernetes: Acts as process manager: scales by creating more pods
• Don’t put process managers in your containers

microservices app

A B C

microservices app

A B C

B C

Cper process
scaling

Bad Example

Containers should be a single process!

IX. Disposability

Maximize robustness with fast startup and graceful shutdown

Why?

• Enables fast elastic scaling, robust production deployments. Recover quickly from failures.

How?
• No multi-minute app startups!
• Docker enables fast startup: Union file system and image layers
• In best practice: Handle SIGTERM in main container process.

X. Dev/Prod Parity

Keep development, staging and production as similar as possible. Minimize time gap, personnel gap and
tools gap

How?

• Time gap: Docker supports delivering code to production faster by enabling automation and
reducing bugs caused by environmental drift.

• Personnel gap: Dockerfile is the point of collaboration between devs and ops
• Tools gap: Docker makes it very easy to spin up production resources locally by using `docker run

...`

XI. Logs

Treat logs as event streams

How?

• Write logs to stdout (Docker does by default)
• Centralizes logs using ELK or [your tool stack here]
• Don’t write logs to disk!
• Don’t retroactively inspect logs! Use ELK to get search, alerts
• Don’t throw out logs! Save data and make data driven decisions

XII. Admin Processes

Run admin/management tasks as one-off processes.

Don’t treat them as special processes

How?

• Follow 12-factor for your admin processes (as much as applicable)

• Option to collocate in same source code repo if tightly coupled to another app

• “Enter” namespaces to run one-off commands via `docker exec …`

